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Abstract Previous theoretical researches on the two-
dimensional terahertz spectroscopy (2DTS), which are
conducted via inefficiently time-consuming numerical
simulation, deal with only single-mode system. To over-
come the limitations, we derive a classical-theory-based
analytical solution which is applicable to multi-modes
system. Three typical weak sources of nonlinearities are
introduced. The findings suggest that the analytical results
correspond well with those obtained by the traditional
numerical simulation. Thus the study provides a more
efficient and practical method to directly calculate 2DTS,
and, in a broader sense, sheds new light on the theory of
2DTS.

Keywords two-dimensional spectroscopy, terahertz, clas-
sical method

1 Introduction

Two-dimensional (2D) spectroscopy is an important tool to
study the dynamics of vibrational excitation of matter [1].
It provides richer information than one-dimensional (1D)
spectroscopy by which it is difficult to obtain the nonlinear
information of materials. In 1D time-resolved spectro-
scopy, the signal emitted from the interaction of a single
light pulse with materials is measured in time-domain, and
the sample’s intrinsic absorption spectrum can be acquired
via Fourier transform (FT). If another pulse with an
interval T to the former one is also incident on the sample,
a nonlinear signal is emitted, which is determined as a
function of detection time t and interval T . If we scan t and
T , the 2D-FT of the signal yields two frequency

dimensions, detection frequency ωt and excitation fre-
quency ωT [2], thus the spectroscopy is a 2D one.
2D spectroscopy has been widely applied in infrared

region to study inhomogeneous distribution of resonance
frequencies, anharmonicity of intra- and intermolecular
vibrational modes, and the coupling between different
modes, among other things [1,3–9]. Because of the advent
of intense terahertz (THz) pulse sources [10–12], two-
dimensional terahertz spectroscopy (2DTS) is now avail-
able, revealing more nonlinear characteristics of materials
in THz region [1,3,4,13–15].
The physical model of 2DTS can be briefly explained as

follows. As is shown in Fig. 1, two successive light pulses
E1 and E2 are collinearly incident on samples at time t ¼
– T and t ¼ 0 respectively, thus inducing second-order
nonlinear polarization PNLðt,TÞ which in turn leads to a
nonlinear electric field ENLðt,TÞ. Using 2D-FT in t and T
dimensions, we can acquire the corresponding spectrum in
frequency-domain as a function of detection frequency ωt
and excitation frequency ωT .
In experiments, the interval T between E1 and E2 can be

easily controlled by an optical delay line. For each certain
interval T , the nonlinear signal ENL is measured as a
function of real time t, thus the measurements for different
T yield a 2D function ENLðt,TÞ. After 2D-FT, the
experimental 2DTS is obtained [4,14,15].
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To distinguish the contributions from different sources
of nonlinearities, one needs to perform theoretical calcula-
tion to fit the measured results. In THz region, the THz
photon energy ὼ is so low that ὼ << kBTs (kB is the
Boltzmann constant and Ts is the temperature of the
sample). In another word, 2DTS system has a classical
nature. Therefore, current theoretical analysis on 2DTS has
been majorly based on Lorentz model in the framework of
classical theory [1,16–18]. Despite their significance, these
researches are narrow-ranged as they deal with only single-
mode systems, and the derivation results are given as
nonlinear polarization PNLðt,TÞ in terms of multiple
integral. Specifically, there are three limitations: first, the
multiple integral is time consuming; secondly, numerical
2D-FT needs to be performed to transform the results into
frequency-domain; and thirdly, excessive effort is required
to obtain the nonlinear electric field.
To overcome the limitations, we propose a classical

theory based analytical method which not only can be used
to calculate 2DTS directly and efficiently, but also is
applicable to multi-mode system.

2 Theoretical derivation

The derivation of our analytical solution is explained as
follows.
Assuming E1 and E2 are parallel, the total incident field

is the sum of two pulses:

Eðt,TÞ ¼ E2ðtÞ þ E1ðt þ TÞ: (1)

The system is regarded as summation of a series of
oscillators described by Lorentz model. For a N-mode
system, the linear equation of motion of the i th vibrational
mode is

d2ri
dt2

þ gi
dri
dt

þ ω2
i ri ¼

1

mi
qiEðt,TÞ, (2)

where ri, gi, mi, ωi and qi are respectively the vibrational
coordinate, damping constant, mass, resonance frequency
and effective charge of the i th mode. The solution of this
equation is

riðt,TÞ ¼ qiSiðtÞ � Eðt,TÞ, (3)

where SiðtÞ is

SiðtÞ ¼
1

miεi
e –

1
2gi tsinðεitÞ, εi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
i –g

2
i =4

q
, ðt>0Þ, (4)

and � is convolution in t dimension. The FT of SiðtÞ is

~SiðωtÞ ¼
1

mi

1

ω2
i – jgiωt –ω

2
t
, (5)

where j is the imaginary unit.
The induced polarization can be expressed as

PðtÞ ¼ �
XN
i¼1

pi ¼ �
XN
i¼1

qiri, (6)

where � is the density of the molecule and pi is the effective
dipole moment of the i th mode.
According to the perturbation method, ri and P are

expanded in the order of E as

ri ¼ rð1Þi þ rð2Þi ,   P ¼ Pð1Þ þ Pð2Þ,   E ¼ Eð1Þ þ Eð2Þ, (7)

where rð1Þi and Pð1Þ are the linear terms, while rð2Þi and Pð2Þ

are the second-order nonlinear terms, and rðnÞi ,   PðnÞ /
ðEð1ÞÞn. The electric fields are determined by

∂2

∂z2
þ �0ω

2
t ε0 þ �

XN
i¼1

qi~SiðωtÞ
 !" #

~E
ð1Þðz,ωtÞ ¼ 0, (8)

∂2

∂z2
þ �0ω

2
t ε0 þ �

XN
i¼1

qi~SiðωtÞ
 !" #

~E
ð2Þðz,ωt,ωT Þ

¼ –�0ω
2
t
~P
ð2Þðz,ωt,ωT Þ, (9)

where ε0, �0 and z are respectively the permittivity of
vacuum, permeability of vacuum and propagation distance
in the medium.
In general, there are three typical second-order non-

linearities: anharmonicity (AH), nonlinear coupling (NC),
and nonlinear damping (ND) in 2DTS [17]. AH corre-
sponds to the nonlinearity rising from vibrational coordi-
nate dependence of the resonance frequency.
Mathematically, AH is introduced by the addition of a

third-order term to the harmonic potential function of the
vibrational mode as

V ðrÞ ¼
XN
i¼1

1

2
miω

2
i r

2
i þ

1

3!

XN
i,j,k¼1

Bijkrirjrk , (10)

where Bijk ¼ ∂3V ðrÞ=∂ri∂rj∂rk is the coupling parameter.
The rirj term does not exist since it can be removed by

simply changing the set of modes [19]. Thus, the ω2
i ri term

in Eq. (2) becomes

ω2
i ri↕ ↓

1

mi

∂
∂ri

V ¼ ω2
i ri þ

1

2mi

XN
j,k¼1

Bijkrjrk : (11)

By selecting terms proportional to the same order of E,
we obtain the equations for them as

d2rð1Þi

dt2
þ gi

drð1Þi

dt
þ ω2

i r
ð1Þ
i ¼ 1

mi
qiE

ð1Þðt,TÞ, (12)

d2rð2Þi

dt2
þ gi

drð2Þi

dt
þ ω2

i r
ð2Þ
i ¼ 1

2mi

XN
j,k¼1

Bijkr
ð1Þ
j rð1Þk : (13)

414 Front. Optoelectron. 2018, 11(4): 413–418



By solving Eqs. (12) and (13) with only cross terms of
E1 and E2 kept, we achieve the solution of the second-order
polarization in time-domain as

Pð2Þ
AHðt,TÞ ¼ – �

XN
i,j,k¼1

BijkqiqjqkSiðtÞ

f½SjðtÞ � E2ðtÞ�½SkðtÞ � E1ðt þ TÞ�g: (14)

This expression agrees with those in Refs. [1,16–18]
when N ¼ 1. According to Eqs. (8) and (9), the induced
second-order electric field is

~Eð2Þ
AHðz,ωt,ωT Þ

¼ – ~R
ð2Þ XN

i,j,k¼1

Bijkqiqjqk~SiðωtÞ~Sjðωt –ωT Þ~SkðωT Þ, (15)

where
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Δkð2Þ ¼ kðωt –ωT Þ þ kðωT Þ – kðωtÞ, (17)
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For NC, the dipole moment is expressed as

p ¼
XN
i¼1

qiri þ
1

2

XN
i,j¼1

qijrirj, (19)

where qij ¼ – ∂2pE=∂ri∂rj is the coupling parameter. Thus,
the qiE=mi term in Eq. (2) becomes

1

mi
qiE↕ ↓

1

mi

∂
∂ri

pE ¼ 1

mi
qiE þ 1

mi

XN
j¼1

qijr
ð1Þ
j E: (20)

By using perturbation method, we obtain the second-
order polarization in time-domain as

Pð2Þ
NCðt,TÞ ¼ �

XN
i,j¼1

qijqiqjSiðtÞ �
½SjðtÞ � E2ðtÞ�E1ðt þ TÞ
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( )

þ �
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qijqiqj½SiðtÞ � E2ðtÞ�½SjðtÞ � E1ðt þ TÞ�:

(21)

This expression matches that in Refs. [1,16–18] when
N ¼ 1. The induced second-order electric field is

~Eð2Þ
NCðz,ωt,ωT Þ

¼ ~R
ð2ÞXN

i,j¼1

qijqiqj

~SiðωtÞ ~Sjðωt –ωT Þ þ ~SjðωT Þ
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( )
:

(22)

ND is introduced by adding a second-order term to the
damping as

gi
dri
dt

↕ ↓gi
dri
dt

þ
XN
j,k¼1

gk
ij
drk
dt

rj, (23)

where gk
ij is the nonlinear damping parameter. Through

derivation, the polarization is
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ijqiqjqk
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And the induced second-order electric field is

~Eð2Þ
NDðz,ωt,ωT Þ

¼ – ~R
ð2Þ XN

i,j,k¼1

gk
ijqiqjqk~SiðωtÞ
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2
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3
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where

~Sdi ðωtÞ ¼ εie – jπωt=2εi –
gi

2

� �
~SiðωtÞ: (26)

3 Results

To demonstrate the solution, a 3-mode system is
considered, the parameters of which are set as

ω1 ¼ 0:9� 2π THz,

ω2 ¼ 1:2� 2π THz,

ω3 ¼ 1:7� 2π THz,

gi ¼ 0:2ωi, i ¼ 1,2,3,

m1 ¼ m2 ¼ m3,

q1 ¼ q2 ¼ q3: (27)

We choose a typical THz shape pulse as incident pulses,
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as shown in Fig. 2, and assume E1ðtÞ and E2ðtÞ are
identical.
Given that the purpose of this section is to validate the

results, only three cases are considered: 1) all nonlinear
parameters are zero except B123 ¼ B132 ¼ ::: ¼ B321 (AH),
2) all nonlinear parameters are zero except q12 ¼ q21 (NC),
3) all nonlinear parameters are zero except g1

23 ¼ g1
32

(ND). The nonlinear electric field ~E
ð2Þðωt,ωT Þ is calculated

by two methods, i.e., our analytical solution and the
traditional simulation method of which the process is:

1) the polarization Pð2Þðt,TÞ is calculated in time-domain
through numerical integral according to Eqs. (14), (21) and
(24) respectively; 2) numerical 2D-FT is performed so that

the polarization in frequency-domain ~P
ð2Þðωt,ωT Þ is

obtained; 3) the electric field ~E
ð2Þðωt,ωT Þ is numerically

calculated according to Eq. (8). Figure 3 illustrates the
calculated absolute value of nonlinear electric fields with
normalized magnitude. Six sub-graphs show the electric
fields corresponding to three different sources of non-
linearities and the two calculation methods. Frequency
ωi þ ωj and ωi –ωj are expressed as Ωij ¼ ωi þ ωj and
Ωi

j ¼ ωi –ωj in these sub-graphs.

4 Discussion

Obviously, the analytical results agree well with the
simulations. For AH (Figs. 3(a) and 3(d)), peaks appear
at ðωt,ωT Þ ¼ �ðωi,� ωjÞ,�ðωi,ωi � ωjÞ,�ðωi � ωj,ωiÞ,
where i,j ¼ 1,2,3 ði≠jÞ, as predicted in Eq. (15). These
peaks correspond to the coupling between mode 1, 2, and 3
through the anharmonicity of potential. For NC (Figs. 3(b)
and 3(e)), peaks appear at ðωt,ωT Þ ¼ �ðωi,� ωjÞ,
�ðωi,ωi � ωjÞ, �ðωi � ωj,ωiÞ, where i,j ¼ 1,2 ði≠jÞ,
as predicted in Eq. (22). These peaks correspond to the
coupling between mode 1 and 2 through the nonlinearity of
dipole moment. For ND (Figs. 3(c) and 3(f)), peaks appear
at ðωt,ωT Þ ¼ �ðωi,� ωjÞ,�ðωi,ωi � ωjÞ,�ðωi � ω3,ωiÞ,
�ðω3 –ωi,ω3Þ, where i ¼ 1,2, j ¼ 1,2,3 ði≠jÞ, as pre-
dicted in Eq. (25). These peaks correspond to the coupling
between the vibrational coordinate of mode 1, 2 and the

Fig. 2 THz pulse used in calculation shown in time- (a) and
frequency- (b) domain

Fig. 3 Normalized 2D diagrams corresponding to (a) AH, (b) NC, and (c) ND obtained by analytical calculation, and those
corresponding to (d) AH, (e) NC, and (f) ND obtained by numerical simulation. Only the first quartile is presented to display more details
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velocity of mode 3 through the nonlinearity of damping.
However, the calculation amount of the analytical

solution is much smaller than numerical simulation, since
the former only involves multiplication and addition, while
the later involves integral. The ratio of the calculation
amounts of these two methods is nearly 1 : 0:19Fw=Δf (Fw
is frequency window and Δf is the spectral resolution). For
experiments the frequency window may be over 30 THz
[4], and if the spectral resolution is 0.1 THz, the calculation
amount of numerical simulation is 57 times larger than that
of analytical calculation.

5 Conclusions

Using multi-oscillator model involving three sources of
weak nonlinearities, we have achieved a classical-theory-
based analytical solution for second-order 2DTS. By
calculating the spectrum of a 3-mode system, we have
verified that our analytical calculations are consistent with
the traditional numerical simulation results. Compared to
former theoretical works which only dealt with single-
mode systems, our solution has two major advantages:
first, it is more wide-ranging in term of application as it can
be applied to multi-modes system; secondly, it has much
lower computational cost as it directly gives the second-
order transmission field instead of polarization and no
numerical integral needs to be performed. To conclude,
this new analytical approach offers a more efficient and
practical method to directly obtain second-order 2DTS in
replacement of complex simulation. In a broader sense, our
study sheds new light on the theory of 2DTS, which may
enable promising future applications.
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